Synthesis and X-Ray Crystal Structure of a Stannaimine

Günter Ossig, Anton Meller,* Stefanie Freitag and Regine Herbst-Irmer

Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, D-3400 Göttingen, Germany

A stannaimine has been isolated for the first time; the tin atom is surrounded by three nitrogen atoms in a planar arrangement and the tin–nitrogen double bond is shortened by 10 pm compared with tin–nitrogen single bonds.

Only a few examples of stable compounds containing a double bond to tin atoms have been reported. For recent results regarding the > Sn=P- and > Sn=Sn < sequences see ref. 1 and 2 and citations given there. Two stannenes with > Sn=C < double bonds have been also described and one of them characterized by an X-ray structure determination (so far the only one for a compound with a double bond on tin).³ Stannaimines, species containing a > Sn=N-unit, are extremely reactive and have been trapped in a variety of reactions. The

reaction with stannylene has produced azadistanniridine in a [2 + 1]cycloaddition⁴ and with azides [2 + 3]cycloadditions have led to the formation of stannatetrazoles⁴⁻⁶ while the addition to the Si-N bond of trimethylsilylazide yielded an azidostannane.⁶ Otherwise dimerization products of stannaimines as diazadistannetidines^{4,5,7,8} or a hexaazadistannadispirodecane were isolated.⁹

We have prepared stable germaimines from highly sterically hindered diazagermylenes and azidosilanes or 2,6-disubstituted phenylazides. $^{10.11}$ The same type of reaction has now yielded bis[bis(trimethylsilyl)amino]-(2,6-diisopropylphenylimino)stannane 1, the first stannaimine isolated in substance as shown in Scheme $1.\dagger$

Crystalline 1 is stable at -30 °C but rearranges in solution of hexane within 2 weeks to give 2 by intramolecular addition of the C-H bond of one of the isopropyl groups across the Sn=N bond.

Fig. 1 Molecular structure of 1; selected bond distances (pm) and angles (°): Sn(1)-N(1) 192.1(2), Sn(1)-N(2) 201.5(2), Sn(1)-N(3) 203.0(3), N(1)-C(1) 140.6(4); N(1)-Sn(1)-N(2) 114.3(1), N(1)-Sn(1)-N(3) 129.1(1), N(2)-Sn(1)-N(3) 115.8(1), C(1)-N(1)-Sn(1) 120.6(2).

† Preparative details: Starting materials: **A**;¹⁴ **B**: yellow oil, b.p. 48 °C/0.01 mbar (52%) analogue;¹⁵ **C**: yellow oil, b.p. 42 °C/0.01 mbar (53%) analogue.¹⁵ All reactions under dry nitrogen.

To 2.78 g (6.33 mmol) of bis[bis(trimethylsilyl)amino]stannane A, which was freshly distilled into a Schlenkbulb, was added 70 ml of degassed dry hexane. Then 1.29 g (6.33 mmol) of 2,6-diisopropylphenylazide B were added at $-30\,^{\circ}\text{C}$ by a syringe through a septum. The solution was stirred at $-30\,^{\circ}\text{C}$ for 4 h. Within 15 min the colour changed from light-orange to brown-red. Storing at $-80\,^{\circ}\text{C}$ for 2 weeks gave crystals of 1, from which the solution was decanted. The crystals were washed at $-78\,^{\circ}\text{C}$ by recondensation of 10 ml of hexane in vacuo. The yield of vacuum-dried crystals at $-30\,^{\circ}\text{C}$ was 2.2 g (3.6 mmol) (57%) of 1. From the ¹H NMR spectrum the purity exceeded 90%. Dark-red single crystals were obtained, together with a poorly crystallized substance, by storing a solution of 1, which was concentrated at $-30\,^{\circ}\text{C}$, at $-80\,^{\circ}\text{C}$. Crystallization at lower concentration led to crystals which were not suitable for a structure analysis.

For the preparation of 2, 30 ml of hexane was condensed onto 1.1 g (1.8 mmol) of 1 in vacuo at -78 °C and the stirred solution was slowly warmed to ambient temperature. By removing part of the solvent under reduced pressure and storing at -25 °C, pale-yellow crystals of 2 were obtained (0.82 g, 1.33 mmol, 76%), m.p. 106 °C (air sensitive). Satisfactory elemental analyses were obtained.

The crystal structure analysis of 1‡ shows a trigonal planar arrangement of the three N atoms around the tin atom. The two Sn-N single bond lengths 201.5(2) and 203.0(3) pm are slightly shortened compared to most Sn-N single bonds (205 pm),¹² the Sn=N (imino) bond length is further shortened by 10 pm and is 192.1(2) pm.

Our attempts to obtain stannaimines by the following reactions were unsuccessful: A did not react with 2,4,6- $(Bu^t)_3C_6H_2N_3$ in toluene at 111 °C and $[2,6-(Pr^i)_2C_6H_3(Me_3-Si)N]_2Sn$ and 2,4,6-Me₃C₆H₂N₃ were both recovered unchanged from boiling hexane (69 °C). On the other hand the reaction of A and 2,6-Et₂C₆H₃N₃ C at -50 °C (2 h) gave the corresponding stannatetrazole 3 by a [2+3]cycloaddition of a second mol of C across the Sn=N bond of the corresponding stannaimine formed as an intermediate (Scheme 2).§

Compounds 1, 2 and 3 show spectroscopic data in accordance with the structures given. The only intriguing value is

A +
$$2N_3R''$$
 hexane, $-50 \, ^{\circ}C$ $R' = N(SiMe_3)_2$ $R'' = 2$, $6-Et_2C_6H_3$ Scheme 2

‡ Crystal data for 1: $C_{24}H_{53}N_3Si_4Sn$, triclinic, space group $P\overline{1}$, a =909.0(3), b = 1067.9(3), c = 1765.6(6) pm, $\alpha = 86.68(3)$, $\beta = 80.99(2)$, $\gamma = 81.02(2)^{\circ}$, U = 1.6710(9) nm³, U = 2, U = 1.222 Mg m^{-3} , $\mu = 0.92 \text{ mm}^{-1}$, F(000) = 648, crystal dimensions $0.2 \times 0.4 \times 0.6$ mm, 7848 reflections measured in the range of 8<20<55°, 5892 unique and 5888 reflections used in the structural analysis. The data set was collected on a Siemens-Stoe AED diffractometer using Mo-K α radiation ($\lambda = 71.073$ pm) at a temperature of 153 K. Semiempirical absorption correction was applied. The structure was solved by Patterson and Fourier methods. All non-hydrogen atoms were refined anisotropically, and a riding model starting from calculated positions was employed for the hydrogen atoms. 305 parameters were refined with a weighting scheme $[w^{-1} = \sigma^2 F_o^2 +$ $(0.0220 \ P)^2 + 1.72 \ P$, where $P = (F_0^2 + 2F_c^2)/3$]. The refinement converged with wR2 = 0.0690 for all data and R1 = 0.0322 for F > $4\sigma(F)$ and final difference electron density maxima of 0.42 and minima of -0.54×10^{-6} e pm⁻³. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to the Authors, Issue

\$ Selected spectroscopic data for 3: yellow crystals, m.p. 135–136 °C (decomp.), 38% yield. Satisfactory elemental analyses were obtained. MS [m/z (%)]: El 762 (3) [M+], 146 (100). NMR: δ (¹H) 0.16 (s, 36H, SiMe3), 1.32 (t, $^3J_{\rm HH}$ 7.5 Hz, 12H, CH₂CH₃), 2.85 (q, 8H, CH₂CH₃), 6.88–6.98 (2H), 7.07–7.13 (4H) (2 × m, C₆H₃); δ (¹³C) (* denotes C quart); 6.30 [$^1J_{\rm SiC}$ 56 Hz, 3J ($^{117/119}{\rm Sn}^{13}{\rm C}$) 12.6 Hz, SiMe3], 15.91 (CH₂CH₃), 27.22 (CH₂CH₃), 126.92 (4C), 127.31 (2C), 143.08* (4C); 143.84* (2C) (C₆H₃).

¶ Selected spectroscopic data: 1: NMR (in [2H_8]toluene at $-40\,^{\circ}$ C): $\delta(^1H)$ 0.29 (s, 36H, SiMe₃), 1.41 (d, $^3J_{HH}$ 6.8 Hz, 12H, CH(CH₃)₂, 3.69 [sept, 2H, CH(CH₃)₂], 7.05 (pseudo t, 2 × d at 7.04 + 7.06, $^3J_{HH}$ 7.6 Hz, 1H, C₆H₃), 7.25 (d, $^3J_{HH}$ 7.6 Hz, 2H, C₆H₃); $\delta(^{13}\text{C})$ 4.53 (SiMe₃), 23.52 [CH(CH₃)₂], 29.63 [CH(CH₃)₂], 121.52 (1C), 122.36 (2C), 140.02 (2C), 153.01 (1C) (C₆H₃), $\delta(^{29}\text{Si})$ 6.82 ($^1J_{SiC}$ 56 Hz, $^2J_{SiSn}$ 16 Hz); $\delta(^{119}\text{Sn})$ -3.5 (rel. to Me₄Sn ext.).

(SiNe₃), 25.32 [CH(CH₃)₂], 29.03 [CH(CH₃)₂], 121.32 (1C), 122.30 (2C), 140.02 (2C), 153.01 (1C) (C₆H₃), δ (²⁹Si) 6.82 (¹J_{SiC} 56 Hz, ²J_{SiSn} 16 Hz); δ (¹¹⁹Sn) – 3.5 (rel. to Me₄Sn ext.).

2: MS [m/z (%)] El: 615(25) [M⁺], 280(100) [SnN(SiMe₃)₂⁺]. NMR (in CDCl₃): δ (¹H) 0.20 (s, 36H, SiMe₃), 1.26 (d, ³J_{HH} 6.8 Hz, 6H, CH(CH₃)₂, 1.67 [s, ³J(¹¹⁷/¹¹⁹SnH) 121.6/125.5 Hz], 2 pairs of satellites, 6H, C(CH₃)₂, 2.86 [sept, 1H, CH(CH₃)₂], 3.77 (s, 1H, NH), 6.61 (pseudo t, 2 × d at 6.60 + 6.62, ³J_{HH} 7.6 Hz, 1H, C₆H₃), 6.97 (d, ³J_{HH} 7.6 Hz, 2H, C₆H₃); δ (¹³C) (* denotes C quart) 5.91 (SiMe₃), 22.39 [CH(CH₃)₂], 28.63 [CH(CH₃)₂], 29.34 [C(CH₃)₂], 43.87* [¹J (¹¹⁷/¹¹⁹Sn¹³C) 678.0/709.3 Hz, C(CH₃)₂], 115.35, 121.44, 122.84, 131.06*, 134.48*, 146.81* (C₆H₃); δ (²⁹Si) 4.90 (¹J_{SiC} 55.6 ²J_{SiSn} 10.2 Hz); δ (¹⁵N) (rel. to CH₃NO₂ ext.) for NH: –303.4 [¹J_{NH} 78 Hz, ¹J(¹¹⁷/¹¹⁹Sn¹⁵N) 68/72 Hz]; δ (¹¹⁹Sn) ([²H₈]toluene rel. to Me₄Sn) –24.2.

the chemical shift of 119Sn in compound 1 which is unexpectedly at -3.5 ppm higher field than Me₄Sn and only 21 ppm at lower field compared with 2. However, it is well known that unusual bond systems give rise to unexpected shift values, e.g. in amino-iminoboranes, in which the $\delta(^{11}B)$ shifts nearly correspond to those of tetra coordinated boron. 13

We are grateful to the Fonds der Chemischen Industrie for financial support of this work.

Received, 22nd December 1992; Com. 2/06795A

References

- 1 H. Ranaivonjatovo, J. Escudie, C. Couret and J. Satgé, J. Chem. Soc., Chem. Commun., 1992, 1047.
- 2 M. Weidenbruch, A. Schäfer, H. Kilian, S. Pohl, W. Saak and H. Marsmann, Chem. Ber., 1992, 125, 563.
- 3 A. Berndt, H. Meyer, G. Baum, W. Massa and St. Berger, Pure Appl. Chem., 1987, 59, 1011.

- 4 H. Grützmacher and H. Pritzkow, Angew. Chem., 1991, 103, 976; Angew. Chem., Int. Ed. Engl., 1991, 30, 1017.
- W. P. Neumann, Chem. Rev., 1991, 91, 311, p. 331 and cit. lit.
- 6 A. M. Khmaruk and A. M. Pinchuk, Zh. Org. Khim., 1984, 20, 1805
- 7 A. M. Khmaruk and A. M. Pinchuk, Zh. Org. Khim., 1983, 19, 883.
- 8 N. Wiberg and S.-K. Vasisht, Angew. Chem., 1991, 103, 105; Angew. Chem., Int. Ed. Engl., 1991, 30, 93. 9 H. Preut, R. C. Obloh and W. P. Neumann, Acta Crystallogr.,
- Sect. C., 1987, 43, 589.
- 10 J. Pfeiffer, W. Maringgele, M. Noltemeyer and A. Meller. Chem. Ber., 1989, 122, 245.
- 11 A. Meller, G. Ossig, W. Maringgele, D. Stalke, R. Herbst-Irmer, S. Freitag and G. M. Sheldrick, J. Chem. Soc., Chem. Commun., 1991, 1123.
- 12 P. G. Harrison, Chemistry of Tin, Blackie, Glasgow and London 1989.
- 13 H. Nöth, Angew. Chem., 1988, 100, 1664; Angew. Chem., Int. Ed. Engl., 1988, 27, 1603.
- 14 M. J. S. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Riviere and M. Riviere-Baudet, J. Chem. Soc., Dalton Trans., 1977, 2004.
- 15 D. L. Herring, J. Org. Chem., 1961, 26, 3998.